Computing the Rectilinear Center of Uncertain Points in the Plane
نویسندگان
چکیده
In this paper, we consider the rectilinear one-center problem on uncertain points in the plane. In this problem, we are given a set P of n (weighted) uncertain points in the plane and each uncertain point has m possible locations each associated with a probability for the point appearing at that location. The goal is to find a point q∗ in the plane which minimizes the maximum expected rectilinear distance from q∗ to all uncertain points of P , and q∗ is called a rectilinear center. We present an algorithm that solves the problem in O(mn) time. Since the input size of the problem is Θ(mn), our algorithm is optimal.
منابع مشابه
A Multi-Period 1-Center Location Problem in the Presence of a Probabilistic Line Barrier
This paper investigates a multi-period rectilinear distance 1-center location problem considering a line-shaped barrier, in which the starting point of the barrier follows the uniform distribution function. In addition, the existing points are sensitive to demands and locations. The purpose of the presented model is to minimize the maximum barrier distance from the new facility to the existing ...
متن کاملSweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملComputing a rectilinear shortest path amid splinegons in plane
We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain S to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain P from S and transform a rectilinear shortest path computed in P to a path between s and t amid splinegon obstacles in S. When ...
متن کاملOn the Complexity of Some Common Geometric Location Problems
Given n demand points in the plane, the p-center problem is to find p supply points (anywhere in the plane) so as to minimize the maximum distance from a demo& point to its respective nearest supply point. The p-median problem is to minimize the sum of distances from demand points to their respective nearest supply points. We prove that the p-center and the p-media problems relative to both the...
متن کاملBicriteria Rectilinear Shortest Paths among Rectilinear Obstacles in the Plane
Given a rectilinear domain P of h pairwise-disjoint rectilinear obstacles with a total of n vertices in the plane, we study the problem of computing bicriteria rectilinear shortest paths between two points s and t in P. Three types of bicriteria rectilinear paths are considered: minimum-link shortest paths, shortest minimum-link paths, and minimum-cost paths where the cost of a path is a non-de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.05377 شماره
صفحات -
تاریخ انتشار 2015